在未来1到2年内,人工智能代理开发的主要瓶颈是什么?
我一直在关注像Devin(由Cognition开发)、AutoGen和OpenAI的GPT等AI代理系统的进展。我很好奇:您认为在未来1到2年内,AI代理的关键瓶颈会是什么?是推理能力、长期任务规划、工具链集成,还是其他方面?
如果今天有人想在这个领域进行开发,哪些技术挑战或应用领域最值得攻克?
(作为背景:我是一名工程师,正在探索如何将AI代理应用于SaaS产品开发,特别关注推理、多步骤任务和工具使用。)
期待听到您的想法,以及您推荐的任何资源。谢谢!
查看原文
I've been following the progress of AI Agent systems like Devin (by Cognition), AutoGen, and OpenAI's GPTs.<p>I’m curious: what do you think will be the key bottlenecks for AI Agents over the next 1–2 years?
Will it be reasoning capabilities, long-term task planning, toolchain integration, or something else?<p>If someone were to build in this space today, which technical challenges or application areas would be the most worthwhile to tackle?<p>(For context: I’m an engineer exploring how to apply AI Agents to SaaS product development, with a particular interest in reasoning, multi-step tasks, and tool usage.)<p>Would love to hear your thoughts, and any resources you'd recommend digging into. Thanks!