发布 HN:Tinfoil(YC X25):云端人工智能的可验证隐私

15作者: FrasiertheLion2 个月前原帖
你好,HN!我们是来自Tinfoil的Tanya、Sacha、Jules和Nate:<a href="https:&#x2F;&#x2F;tinfoil.sh">https:&#x2F;&#x2F;tinfoil.sh</a>。我们在云端托管模型和AI工作负载,同时保证零数据访问和保留。这使我们能够在云GPU上运行开源的大型语言模型(LLMs),如Llama或Deepseek R1,而无需您信任我们或任何云服务提供商处理您的私人数据。 由于AI在获得更多上下文时表现更佳,我们认为解决AI隐私问题将解锁更有价值的AI应用,就像互联网的TLS协议使电子商务蓬勃发展一样,让人们知道他们的信用卡信息不会被窃取。 我们团队的背景涵盖了密码学、安全性和基础设施。Jules在麻省理工学院(MIT)获得了可信硬件和保密计算的博士学位,并与NVIDIA和微软研究院在这方面合作;Sacha在MIT获得了隐私保护密码学的博士学位;Nate曾从事Tor等隐私技术的研究;而我(Tanya)则在Cloudflare的密码学团队工作。我们对像个人身份信息(PII)编辑这样的权宜之计(在某些情况下,如AI个人助手中实际上是不可取的)以及通过法律合同(如数据处理协议DPA)实现的“粉指承诺”安全感到不满。我们希望找到一个真正的解决方案,用可证明的安全性取代信任。 在本地或内部运行模型是一个选择,但可能成本高昂且不便。全同态加密(FHE)在可预见的未来对于大型语言模型的推理并不实用。下一个最佳选择是使用安全区:在芯片上创建一个安全环境,其他在主机上运行的软件无法访问。这使我们能够在云中进行LLM推理,同时能够证明没有人,包括Tinfoil或云服务提供商,可以访问数据。由于这些安全机制是在硬件中实现的,因此性能开销最小。 尽管我们(Tinfoil)控制主机,但我们无法看到安全区内部处理的数据。从高层次来看,安全区是一组被保留、隔离并锁定的核心,以创建一个分隔的区域。所有从安全区出来的数据都是加密的:包括内存和网络流量,以及到其他设备(如GPU)的外设(PCIe)流量。这些加密使用在设置过程中在安全区内部生成的秘密密钥进行,这些密钥从未离开其边界。此外,芯片中内置的“硬件信任根”使客户能够检查安全声明并验证所有安全机制是否到位。 直到最近,安全区仅在CPU上可用。但NVIDIA的保密计算最近将这些基于硬件的功能添加到了他们最新的GPU上,使得在安全区中运行基于GPU的工作负载成为可能。 以下是其工作原理的简要概述: 1. 我们将应在安全区内部运行的代码发布到Github,并将编译后的二进制文件的哈希值发布到一个名为Sigstore的透明日志中。 2. 在将数据发送到安全区之前,客户端从安全区获取一份签名文档,其中包含由CPU制造商签名的运行代码的哈希值。然后,客户端与硬件制造商验证签名,以证明硬件是真实的。接着,客户端从透明日志(Sigstore)获取源代码的哈希值,并检查该哈希是否与我们从安全区获取的哈希相等。这使客户端能够获得可验证的证据,证明安全区正在运行我们所声称的确切代码。 3. 在确认安全区环境符合我们的预期后,客户端将其数据发送到安全区,数据在传输过程中是加密的(TLS),并且仅在安全区内部解密。 4. 处理完全在这个受保护的环境中进行。即使是控制主机的攻击者也无法访问这些数据。 我们相信,使端到端可验证性成为“第一公民”是关键。安全区传统上用于消除对云服务提供商的信任,而不一定是对应用提供商的信任。这一点可以通过保密虚拟机技术(如Azure Confidential VM)来证明,该技术允许主机通过SSH访问保密虚拟机。我们的目标是可证明地消除对我们自身(即应用提供商)以及云服务提供商的信任。 我们鼓励您对我们的隐私声明保持怀疑。可验证性是我们的答案。我们不仅仅是说它是私密的;硬件和密码学让您可以进行检查。这里有一份指南,带您了解验证过程:<a href="https:&#x2F;&#x2F;docs.tinfoil.sh&#x2F;verification&#x2F;attestation-architecture">https:&#x2F;&#x2F;docs.tinfoil.sh&#x2F;verification&#x2F;attestation-architectur...</a>。 人们正在使用我们的服务来分析敏感文档、为专有代码构建协助工具,以及在代理AI应用中处理用户数据,而无需担心之前阻碍云AI采用的隐私风险。 我们很高兴能与HN分享Tinfoil! * 尝试聊天功能(<a href="https:&#x2F;&#x2F;tinfoil.sh&#x2F;chat">https:&#x2F;&#x2F;tinfoil.sh&#x2F;chat</a>):它通过浏览器检查验证证明。免费,有限消息,$20/月可享无限消息和额外模型。 * 使用API(<a href="https:&#x2F;&#x2F;tinfoil.sh&#x2F;inference">https:&#x2F;&#x2F;tinfoil.sh&#x2F;inference</a>):与OpenAI API兼容的接口。$2/100万tokens。 * 将您现有的Docker镜像部署到Tinfoil上,使其实现端到端保密。这里有一个演示,展示如何使用Tinfoil运行一个可以安全处理私人视频的深度伪造检测服务:<a href="https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=_8hLmqoutyk" rel="nofollow">https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=_8hLmqoutyk</a>。注意:此功能目前不支持自助服务。 * 如果您想运行不同的模型或部署自定义应用,或者只是想了解更多信息,请通过[email protected]与我们联系! 请告诉我们您的想法,我们很想听听您在这个领域的经验和想法!
查看原文
Hello HN! We’re Tanya, Sacha, Jules and Nate from Tinfoil: <a href="https:&#x2F;&#x2F;tinfoil.sh">https:&#x2F;&#x2F;tinfoil.sh</a>. We host models and AI workloads on the cloud while guaranteeing zero data access and retention. This lets us run open-source LLMs like Llama, or Deepseek R1 on cloud GPUs without you having to trust us—or any cloud provider—with private data.<p>Since AI performs better the more context you give it, we think solving AI privacy will unlock more valuable AI applications, just how TLS on the Internet enabled e-commerce to flourish knowing that your credit card info wouldn&#x27;t be stolen by someone sniffing internet packets.<p>We come from backgrounds in cryptography, security, and infrastructure. Jules did his PhD in trusted hardware and confidential computing at MIT, and worked with NVIDIA and Microsoft Research on the same, Sacha did his PhD in privacy-preserving cryptography at MIT, Nate worked on privacy tech like Tor, and I (Tanya) was on Cloudflare&#x27;s cryptography team. We were unsatisfied with band-aid techniques like PII redaction (which is actually undesirable in some cases like AI personal assistants) or “pinky promise” security through legal contracts like DPAs. We wanted a real solution that replaced trust with provable security.<p>Running models locally or on-prem is an option, but can be expensive and inconvenient. Fully Homomorphic Encryption (FHE) is not practical for LLM inference for the foreseeable future. The next best option is using secure enclaves: a secure environment on the chip that no other software running on the host machine can access. This lets us perform LLM inference in the cloud while being able to prove that no one, not even Tinfoil or the cloud provider, can access the data. And because these security mechanisms are implemented in hardware, there is minimal performance overhead.<p>Even though we (Tinfoil) control the host machine, we do not have any visibility into the data processed inside of the enclave. At a high level, a secure enclave is a set of cores that are reserved, isolated, and locked down to create a sectioned off area. Everything that comes out of the enclave is encrypted: memory and network traffic, but also peripheral (PCIe) traffic to other devices such as the GPU. These encryptions are performed using secret keys that are generated inside the enclave during setup, which never leave its boundaries. Additionally, a “hardware root of trust” baked into the chip lets clients check security claims and verify that all security mechanisms are in place.<p>Up until recently, secure enclaves were only available on CPUs. But NVIDIA confidential computing recently added these hardware-based capabilities to their latest GPUs, making it possible to run GPU-based workloads in a secure enclave.<p>Here’s how it works in a nutshell:<p>1. We publish the code that should run inside the secure enclave to Github, as well as a hash of the compiled binary to a transparency log called Sigstore<p>2. Before sending data to the enclave, the client fetches a signed document from the enclave which includes a hash of the running code signed by the CPU manufacturer. It then verifies the signature with the hardware manufacturer to prove the hardware is genuine. Then the client fetches a hash of the source code from a transparency log (Sigstore) and checks that the hash equals the one we got from the enclave. This lets the client get verifiable proof that the enclave is running the exact code we claim.<p>3. With the assurance that the enclave environment is what we expect, the client sends its data to the enclave, which travels encrypted (TLS) and is only decrypted inside the enclave.<p>4. Processing happens entirely within this protected environment. Even an attacker that controls the host machine can’t access this data. We believe making end-to-end verifiability a “first class citizen” is key. Secure enclaves have traditionally been used to remove trust from the cloud provider, not necessarily from the application provider. This is evidenced by confidential VM technologies such as Azure Confidential VM allowing ssh access by the host into the confidential VM. Our goal is to provably remove trust both from ourselves, aka the application provider, as well as the cloud provider.<p>We encourage you to be skeptical of our privacy claims. Verifiability is our answer. It’s not just us saying it’s private; the hardware and cryptography let you check. Here’s a guide that walks you through the verification process: <a href="https:&#x2F;&#x2F;docs.tinfoil.sh&#x2F;verification&#x2F;attestation-architecture">https:&#x2F;&#x2F;docs.tinfoil.sh&#x2F;verification&#x2F;attestation-architectur...</a>.<p>People are using us for analyzing sensitive docs, building copilots for proprietary code, and processing user data in agentic AI applications without the privacy risks that previously blocked cloud AI adoption.<p>We’re excited to share Tinfoil with HN!<p>* Try the chat (<a href="https:&#x2F;&#x2F;tinfoil.sh&#x2F;chat">https:&#x2F;&#x2F;tinfoil.sh&#x2F;chat</a>): It verifies attestation with an in-browser check. Free, limited messages, $20&#x2F;month for unlimited messages and additional models<p>* Use the API (<a href="https:&#x2F;&#x2F;tinfoil.sh&#x2F;inference">https:&#x2F;&#x2F;tinfoil.sh&#x2F;inference</a>): OpenAI API compatible interface. $2 &#x2F; 1M tokens<p>* Take your existing Docker image and make it end to end confidential by deploying on Tinfoil. Here&#x27;s a demo of how you could use Tinfoil to run a deepfake detection service that could run securely on people&#x27;s private videos: <a href="https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=_8hLmqoutyk" rel="nofollow">https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=_8hLmqoutyk</a>. Note: This feature is not currently self-serve.<p>* Reach out to us at [email protected] if you want to run a different model or want to deploy a custom application, or if you just want to learn more!<p>Let us know what you think, we’d love to hear about your experiences and ideas in this space!